opcsim 0.5.0
  • API
  • Tutorial
  • Gallery
  • Site
      • Installation
      • Contributing
      • API reference
      • Tutorial
      • Example gallery
  • Page
      • opcsim.equations.cdf.nt

opcsim.equations.cdf.nt¶

opcsim.equations.cdf.nt(n, gm, gsd, dmin=None, dmax=10.0)¶

Evaluate the total number of particles between two diameters.

The CDF of a lognormal distribution is calculated using equation 8.39 from Seinfeld and Pandis.

Mathematically, it is represented as:

\[N_t(D_p)=∫_{D_{min}}^{D_{max}}n_N(D_p^*)dD^*_p=\frac{N_t}{2}+\frac{N_t}{2}*erf\Big(\frac{ln(D_p/D_{pg})}{\sqrt{2} lnσ_g}\Big) \;\;(cm^{-3})\]
Parameters
nfloat

Total aerosol number concentration in units of #/cc

gmfloat

Median particle diameter (geometric mean) in units of microns.

gsdfloat

Geometric Standard Deviation of the distribution.

dminfloat

The minimum particle diameter in microns. Default value is 0 \(\mu m\).

dmaxfloat

The maximum particle diameter in microns. Default value is 10 \(\mu m\).

Returns
N | float

Returns the total number of particles between dmin and dmax in units of [\(particles*cm^{-3}\)]

See also

opcsim.equations.pdf.dn_ddp
opcsim.equations.pdf.dn_dlndp
opcsim.equations.pdf.dn_dlogdp

Examples

Evaluate the number of particles in a simple distribution between 0 and 2.5 \(\mu m\):

>>> d = opcsim.AerosolDistribution()
>>> d.add_mode(1e3, 100, 1.5, "mode 1")
>>> n = opcsim.equations.cdf.nt(1e3, 0.1, 1.5, dmax=2.5)

Back to top

Source

© Copyright 2016-2020, David H Hagan and Jesse H Kroll.
Created using Sphinx 3.0.3.